
A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 1

 Introduction
There have been several papers published over the last two years that describe various techniques for

exploiting the vulnerabilities that are present within the HID iclass family of contactless readers. The

benefit of such papers has been widely debated within the security industry but it is the opinion of this

author they do serve two main purposes. Since these systems are used worldwide to protect valuable

physical and intellectual property assets, these papers not only allow end users to make informed

decisions about the security of the hardware they use but they also force access system manufacturers

to continually improve their products and make them less vulnerable to these types of attacks.

A sampling of these recent papers is included below:

Heart of Darkness - exploring the uncharted backwaters of HID iCLASS security.

http://www.openpcd.org/images/HID-iCLASS-security.pdf

Dismantling iClass and iClass Elite

http://www.cs.ru.nl/~flaviog/publications/dismantling.iClass.pdf

Exposing iClass Key Diversification

http://www.static.usenix.org/events/woot11/tech/final_files/Garcia.pdf

iClass Key Extraction – Exploiting the ICSP Interface

http://www.proxclone.com/pdfs/iClass_Key_Extraction.pdf

This particular paper attempts to demonstrate how a combination of these previously exposed

vulnerabilities and reverse engineered algorithms can be applied to create a real threat to existing high

security systems. It will show that custom hardware can be easily built and used to “wirelessly” extract

secret key information from any “Elite” or “High Security” iClass systems. This key information can then

be used to create, copy, or modify any iClass credential regardless of whether it is distributed by HID or

by one of HID’s worldwide licensed partners.

As test cases, the methods described herein have been used to demonstrate how high security key

information can be easily extracted from two major international resellers of iClass hardware. These two

companies both employ the use of high security keys in the re-branded iClass products that they sell.

(Keyscan -Canada and ISCS “Gold Class”- Australia). Additional information regarding these test cases is

included later on in this paper.

[Note: This paper assumes that the reader has some limited background knowledge regarding iClass

technology. It is assumed that the above referenced papers have been read and that a reasonable level

of understanding of the presented concepts already exists].

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 2

Authentication Keys

A few words about authentication keys …..

All data stored on iClass cards is secured by Authentication Keys. A Key is basically a password used to

protect data from being read or changed without authorization. The iClass cards and readers use 64-bit

keys (56 key bits plus 8 parity bits). One authentication key is used to protect each of the card’s two or

more Application Areas.

The iClass technology supports two different levels of card security, standard mode and high

security/Elite mode. The standard mode uses one “Master” authentication key. This method for

recovering this key has already been thoroughly discussed in the “Heart of Darkness” paper. A more

complicated key generation approach is used in High Security mode. High Security mode uses a 128-

byte key table to generate unique keys for each card’s Unique ID (UID) or Card Serial Number (CSN).

The difference between standard and high security mode regarding how the authentication key gets

generated is shown in Figure 1 below.

Figure 1. Authentication Key Comparison

This paper focusses on the retrieval of the high security key table information shown in the red box in

the above figure. Having the contents of this table for a given “Elite” system is equivalent to having the

HID Master Key for a standard security system. Once this table is known, the diversified key for any card

operating within the same system can be obtained.

HID Master Key

High Security Key

DES
Encryption

Fortification
Algorithm

iClass
Credential

Diversified Key
Stored in Tag

iClass
Credential

128 Byte
Key Table

Key Table
Generation
Algorithm
(Hash2)

UID Table
Pointer

Algorithm
(Hash1)

Authentication Key Difference
(Standard vs. High Security)

Std Security Mode

High Security Mode

Unique (Temp) Key
Generated for
each UID

Index based
on UID

64-bit Keys stored
in Reader EEPROM

Hash0

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 3

My Approach
Since I do not have the mathematical or cryptographic skills of some of the other authors referenced

herein, I attempted to find a simpler approach to performing some of the complex tasks they

presented . Applying the KISS principle (Keep it Simple, Stupid) has always worked for me in the past so I

also tried to apply it to my work here.

The three main steps to obtaining the HS Key table can be summarized as follows:

Step 1. Generate a list of “Weak” CSN/hash1 code combinations.

Step 2. Use the hash1 results to perform an authentication sequence with an iclass reader using the

simulated CSN values. Retain the MAC values obtained from the reader.

Step 3. Using the list of hash1 codes, calculate a MAC for each possible CSN using the cypher algorithm

outlined in the “Dismantling iClass” paper. If the calculated MAC matches the value that was obtained

while simulating a CSN then one or more bytes of the key table have been found.

Step 1. Weak CSN/Hash1 code Recovery
As pointed out in the “Dismantling iClass” paper, the iclass system uses a “less-than-perfect” hashing

algorithm for converting a cards CSN into a hash code (set of indexes into the HSKey table). If certain

CSNs are used with the algorithm then the resulting hash code is inherently “weak”. A weak code is a

code that is comprised of only a few unique byte values. As an example, a 64-bit hash value of

“0xA0A1A2A3A4A5A6A7” would be strong whereas” 0xA0A0A1A1A1A2A0A0” would be weak since

there are only three unique bytes. If the number of unique bytes is small, a brute force attack is possible

since only 2^24 possible combinations exist to try (for a hash value consisting of three bytes).

As an example, a CSN value of 0x000B0FFFF7FF12E0 will result in a hash1 value of

0x0101000045014545. This means that there are only 2^24 possible combinations of key values to

try with the cipher algorithm to find one that will generate the same MAC as the one obtained during

the authentication attempt with the simulated CSN. This will result in the recovery of bytes 00,01 and 45

of the HSkey table .

Finding these weak hash codes is as simple as cycling a large number of possible CSN values through the

hashing algorithm presented in the “Dismantling iClass” paper. However, if you apply the KISS principal

like I did, you might find it simpler to just use a PIC microcontroller to execute the exact (or equivalent)

assembly code routine that was extracted from the iClass reader using the code extraction method

described in the “Heart of Darkness” paper. A disassembled copy of the ”extracted” hash1 routine is

shown below:

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 4

RW300 Subroutine to Calculate Hash1 HS Key Values u sing CSN located at address 0x100-0x107
(wReg=0x100 – loaded from calling routine)
Addr Instr Assembly Code Addr Instr Assembly Code
003338 0x0101 MOVLB 0x1 003372 0x2703 ADDWF 0x3, F , BANKED
00333A 0xC100 MOVFF 0x100, 0x108 003374 0x3B03 SWA PF 0x3, F, BANKED
00333C 0xF108 ---- 003376 0x4703 RLNCF 0x3, F, BAN KED
00333E 0x5101 MOVF 0x1, W, BANKED 003378 0x4302 RR NCF 0x2, F, BANKED
003340 0x1B00 XORWF 0x0, F BANKED 00337A 0x5102 M OVF 0x2, W, BANKED
003342 0x2708 ADDWF 0x8, F, BANKED 00337C 0x2704 A DDWF 0x4, F, BANKED
003344 0x5102 MOVF 0x2, W, BANKED 00337E 0x4304 RR NCF 0x4, F, BANKED
003346 0x1B00 XORWF 0x0, F, BANKED 003380 0x6D04 N EGF 0x4, BANKED
003348 0x2708 ADDWF 0x8, F, BANKED 003382 0x5103 M OVF 0x3, W, BANKED
00334A 0x5103 MOVF 0x3, W, BANKED 003384 0x2705 AD DWF 0x5, F, BANKED
00334C 0x1B00 XORWF 0x0, F, BANKED 003386 0x4705 R LNCF 0x5, F, BANKED
00334E 0x2708 ADDWF 0x8, F, BANKED 003388 0x6D05 N EGF 0x5, BANKED
003350 0x5104 MOVF 0x4, W, BANKED 00338A 0x5105 MO VF 0x5, W, BANKED
003352 0x1B00 XORWF 0x0, F, BANKED 00338C 0x0AC3 X ORLW 0xC3
003354 0x2708 ADDWF 0x8, F, BANKED 00338E 0x2707 A DDWF 0x7, F, BANKED
003356 0x5105 MOVF 0x5, W, BANKED 003390 0x4707 RL NCF 0x7, F, BANKED
003358 0x1B00 XORWF 0x0, F, BANKED 003392 0x5104 M OVF 0x4, W, BANKED
00335A 0x2708 ADDWF 0x8, F, BANKED 003394 0x0A3C X ORLW 0x3C
00335C 0x5106 MOVF 0x6, W, BANKED 003396 0x2706 AD DWF 0x6, F, BANKED
00335E 0x1B00 XORWF 0x0, F, BANKED 003398 0x4306 R RNCF 0x6, F, BANKED
003360 0x2708 ADDWF 0x8, F, BANKED 00339A 0x9F00 B CF 0x0, 7, BANKED
003362 0x5107 MOVF 0x7, W, BANKED 00339C 0x9F01 BC F 0x1, 7, BANKED
003364 0x1B00 XORWF 0x0, F, BANKED 00339E 0x9F02 B CF 0x2, 7, BANKED
003366 0x2708 ADDWF 0x8, F, BANKED 0033A0 0x9F03 B CF 0x3, 7, BANKED
003368 0x5108 MOVF 0x8, W, BANKED 0033A2 0x9F04 BC F 0x4, 7, BANKED
00336A 0x6F01 MOVWF 0x1, BANKED 0033A4 0x9F05 BCF 0x5, 7, BANKED
00336C 0x2702 ADDWF 0x2, F, BANKED
00336E 0x3B02 SWAPF 0x2, F, BANKED
003370 0x5100 MOVF 0x0, W, BANKED

Table 1. Hash1 Assembly Code Routine

Executing the above algorithm for a large number of possible CSN values will result in a very large

output. However, if the output is filtered to only look for hash values with a low number of unique bytes

then a table of a manageable size can be created. Using this table, a group of “optimum” CSN/hash code

combinations can be selected from within the list that will be used to obtain MAC codes during an

authentication sequence with a reader using the simulated CSNs.

The set of CSN /hash codes shown below have been hand-picked by this author to minimize the effort

required to obtain the entire key table. As can be seen, the first simulated CSN can be used to obtain

three bytes of the key table. The next 125 CSN’s each recover one byte of the key table while only

requiring 256 MAC calculations each. The order of the list is “VERY IMPORTANT” since each new

CSN/hash1 code combination takes advantage of previously recovered bytes of the key table.

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 5

Ref

Simulated CSN

Hash1(CSN)

Recov’d
Key
Byte(s)

1 000B0FFFF7FF12E0 0101000045014545 00,01
45

2 030B0EFEF7FF12E0 0202000045014545 02
3 040D0DFDF7FF12E0 0303000045014545 03
4 040F0FF7F7FF12E0 0901000045014545 09
5 011310F4F7FF12E0 0C00000045014545 0C
6 021410F2F7FF12E0 0E00000045014545 0E
7 051710ECF7FF12E0 1400000045014545 14
8 006B6FDFF7FF12E0 2121000045014545 21
9 036B6EDEF7FF12E0 2222000045014545 22
10 046D6DDDF7FF12E0 2323000045014545 23
11 004F4B43F7FF12E0 3D45000045014545 3D
12 004B4F3FF7FF12E0 4141000045014545 41
13 034B4E3EF7FF12E0 4242000045014545 42
14 044D4D3DF7FF12E0 4343000045014545 43
15 0437377FF7FF12E0 0159000045014545 59
16 002B2F9FF7FF12E0 6161000045014545 61
17 032B2E9EF7FF12E0 6262000045014545 62
18 042D2D9DF7FF12E0 6363000045014545 63
19 002723BBF7FF12E0 456D000045014545 6D
20 0252AA80F7FF12E0 0066000045014545 66
21 005CA680F7FF12E0 006A000045014545 6A
22 015FA480F7FF12E0 006C000045014545 6C
23 065EA280F7FF12E0 006E000045014545 6E
24 020E0EFCF7FF12E0 0402000045014545 04
25 050D0EFAF7FF12E0 0602000045014545 06
26 060F0DF9F7FF12E0 0703000045014545 07
27 0001051DF7FF12E0 630B000045014545 0B
28 0207011DF7FF12E0 630F000045014545 0F
29 047F7FA7F7FF12E0 5911000045014545 11
30 04606EE8F7FF12E0 1822000045014545 18
31 047777BFF7FF12E0 4119000045014545 19
32 00696DE5F7FF12E0 1B23000045014545 1B
33 01696EE2F7FF12E0 1E22000045014545 1E
34 026B6DE1F7FF12E0 1F23000045014545 1F
35 013F04E0F7FF12E0 200C000045014545 20
36 026E6EDCF7FF12E0 2422000045014545 24
37 056D6EDAF7FF12E0 2622000045014545 26
38 066F6DD9F7FF12E0 2723000045014545 27
39 016B68ECF7FF12E0 1428000045014545 28
40 046F6FD7F7FF12E0 2921000045014545 29
41 026666F4F7FF12E0 0C2A000045014545 2A
42 006165FDF7FF12E0 032B000045014545 2B
43 006264FEF7FF12E0 022C000045014545 2C
44 016562FEF7FF12E0 022E000045014545 2E
45 026761FDF7FF12E0 032F000045014545 2F
46 005F5B13F7FF12E0 6D35000045014545 35
47 00444E48F7FF12E0 3842000045014545 38
48 00535727F7FF12E0 5939000045014545 39
49 00494D45F7FF12E0 3B43000045014545 3B
50 01494E42F7FF12E0 3E42000045014545 3E
51 024B4D41F7FF12E0 3F43000045014545 3F
52 024E4E3CF7FF12E0 4442000045014545 44
53 054D4E3AF7FF12E0 4642000045014545 46
54 064F4D39F7FF12E0 4743000045014545 47
55 01777CB8F7FF12E0 4814000045014545 48
56 044F4F37F7FF12E0 4941000045014545 49
57 007A7CB6F7FF12E0 4A14000045014545 4A
58 0041455DF7FF12E0 234B000045014545 4B
59 0042445EF7FF12E0 224C000045014545 4C
60 0145425EF7FF12E0 224E000045014545 4E
61 0247415DF7FF12E0 234F000045014545 4F
62 047E7CAEF7FF12E0 5214000045014545 52
63 0057532BF7FF12E0 553D000045014545 55
64 043C3A74F7FF12E0 0C56000045014545 56
65 00242EA8F7FF12E0 5862000045014545 58
66 00292DA5F7FF12E0 5B63000045014545 5B

Ref

Simulated CSN

Hash1(CSN)

Recov’d
Key
Byte(s)

67 00000224F7FF12E0 5C0E000045014545 5C
68 01292EA2F7FF12E0 5E62000045014545 5E
69 022B2DA1F7FF12E0 5F63000045014545 5F
70 022E2E9CF7FF12E0 6462000045014545 64
71 020A0218F7FF12E0 680E000045014545 68
72 00030717F7FF12E0 6909000045014545 69
73 002125BDF7FF12E0 436B000045014545 6B
74 022721BDF7FF12E0 436F000045014545 6F
75 0407070FF7FF12E0 7109000045014545 71
76 00040E08F7FF12E0 7802000045014545 78
77 00333787F7FF12E0 7959000045014545 79
78 00090D05F7FF12E0 7B03000045014545 7B
79 01090E02F7FF12E0 7E02000045014545 7E
80 020B0D01F7FF12E0 7F03000045014545 7F
81 00343E78F7FF12E0 0852000045014545 08
82 046664F6F7FF12E0 0A2C000045014545 0A
83 003F3B73F7FF12E0 0D55000045014545 0D
84 033B3E6EF7FF12E0 1252000045014545 12
85 001115EDF7FF12E0 137B000045014545 13
86 006E68EAF7FF12E0 1628000045014545 16
87 006D69E9F7FF12E0 1727000045014545 17
88 006A6CE6F7FF12E0 1A24000045014545 1A
89 00404264F7FF12E0 1C4E000045014545 1C
90 007773CBF7FF12E0 351D000045014545 1D
91 066E72D0F7FF12E0 301E000045014545 30
92 001B1FCFF7FF12E0 3171000045014545 31
93 017572CEF7FF12E0 321E000045014545 32
94 007175CDF7FF12E0 331B000045014545 33
95 00484A4CF7FF12E0 3446000045014545 34
96 004E484AF7FF12E0 3648000045014545 36
97 004D4949F7FF12E0 3747000045014545 37
98 004A4C46F7FF12E0 3A44000045014545 3A
99 002022C4F7FF12E0 3C6E000045014545 3C
100 001C6640F7FF12E0 402A000045014545 40
101 064E5230F7FF12E0 503E000045014545 50
102 007B7FAFF7FF12E0 5111000045014545 51
103 0051552DF7FF12E0 533B000045014545 53
104 00282AACF7FF12E0 5466000045014545 54
105 02535529F7FF12E0 573B000045014545 57
106 002A2CA6F7FF12E0 5A64000045014545 5A
107 007C4620F7FF12E0 604A000045014545 60
108 02030519F7FF12E0 670B000045014545 67
109 012F3490F7FF12E0 705C000045014545 70
110 0032348EF7FF12E0 725C000045014545 72
111 0031358DF7FF12E0 735B000045014545 73
112 00080A0CF7FF12E0 7406000045014545 74
113 0337328AF7FF12E0 765E000045014545 76
114 000D0909F7FF12E0 7707000045014545 77
115 000A0C06F7FF12E0 7A04000045014545 7A
116 00606204F7FF12E0 7C2E000045014545 7C
117 0007031BF7FF12E0 650D000045014545 65
118 000C16F0F7FF12E0 107A000045014545 10
119 006F6BE3F7FF12E0 1D25000045014545 25
120 002F2BA3F7FF12E0 5D65000045014545 5D
121 0047435BF7FF12E0 254D000045014545 4D
122 0037338BF7FF12E0 755D000045014545 75
123 001F1BD3F7FF12E0 2D75000045014545 2D
124 006763FBF7FF12E0 052D000045014545 05
125 000F0B03F7FF12E0 7D05000045014545 7D
126 001713EBF7FF12E0 157D000045014545 15

Table 2. Weak CSN/Hash1 Combinations used to

recover 128-byte key table

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 6

Step 2. Using CSN Simulation to Recover MAC Codes
Exploiting the above hash1 algorithm requires the ability to perform a partial authentication sequence

with an iClass reader using a simulated weak CSN. I had originally intended to use the Proxmark3 RFID

test tool since it supposedly provided an iClass card simulation capability. Unfortunately I ran into three

issues when attempting to use the Proxmark tool. The first issue was that the Proxmark required a

connection to a PC to run. This is not an ideal setup when trying to attempt a covert operation.

Secondly, the Proxmark required that a new CSN code be typed in for each card simulation attempt.

Again, the overall difficulty and time required to manually enter 126 unique CSN codes was not

desirable. The third and most important roadblock that I encountered with the Proxmark was its

inability to work with the newer RevB and RevC iClass readers . As of this writing it is still unclear as to

why the Proxmark has difficulty communicating with these newer iclass readers.

My only solution was to build my own CSN simulation device. My design consisted of a few operational

amplifiers to perform the front end analog and low pass filtering functions. I used an 8-bit

microcontroller to perform the ISO15693 decode function, manage the automatic CSN sequencing ,

perform the simulated card modulation and handle the MAC codes returned from the iclass reader. I

also built a separate 13.56Mhz antenna printed circuit board that is mounted underneath the main

circuit board.

A picture of my prototype hardware is shown below. My first revision design requires the use of a

separate microcontroller board (or a laptop) to capture the MAC values that are output on a serial

interface by my 8-bit microcontroller. The outputted MAC data is formatted and stored to a small Flash

SD card so the data can be easily transferred later to a PC where some post processing will be done to

recover the full set of high security key table values.

Operation of the unit is simple and straightforward. Simply turn on the unit and place it near the reader.

A blue LED will flash while the device is sequencing through the list of CSNs and capturing the MAC

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 7

values to the SD card. After approximately 15 seconds the LED will stop flashing indicating that all

authentication attempts have been completed and the MAC data has been stored. The SD card can then

be removed and taken back to a PC where further post processing can be done. With a little more work

the entire set of circuitry could be easily integrated into a single smaller enclosure about the size of a

pack of cigarettes to make the entire setup even more covert.

A typical ISO15693 communication sequence between the iClass reader and the simulation hardware is

shown below:

Instruction iClass Reader CSN Simulator Comment
ACTALL 0A Rdr asks all cards

present to respond
 SOF Resp indicates that

a card is present
IDENTIFY 0C Rdr asks for anti-

collision serial no.
 E0 83 5D F1 FE 5F 02 7C 55 3F ACSN + CRC Response
SELECT 81 E0 83 5D F1 FE 5F 02 7C Rdr asks for CSN
 03 1F EC 8A F7 FF 12 E0 AE 86 CSN + CRC Response
PAGE SELECT 84 00 73 33
 No Response Single page chips do

not have to respond
READCHECK 88 02 Rdr asks for Blk2
 00 00 00 00 00 00 00 00 8F 72 E-Purse+CRC Response
CHECK 05 8D 9C 5B 12 C0 33 DD B7 Rdr initiates Auth.

Nonce + MAC
 No Response Auth Sequence

terminated after MAC
is received

ACTALL 0A Seq starts over
(using next CSN)
following previous
Auth failure

Step 3. MAC Calculation
As part of the post processing activity, a Message Authentication Code (MAC) must be calculated for

each possible combination of bytes in the hash1 code in order to be able to compare them to the ones

received during the authentication attempts using a simulated CSN.

The MAC cypher algorithm defined in the “Dismantling iClass” paper requires three inputs including a

64-bit diversified key, a 64-bit card challenge (e-purse) and a 32-bit nonce value(obtained from the

reader). The algorithm itself is fairly simple but obtaining the required inputs is more of a challenge.

Two of the required inputs are straightforward. A fixed card challenge value of 0x00000000 can be used

during the simulated CSN authentication attempts and the nonce value is given to us by the reader

during the authentication sequence. Unfortunately the calculation of a diversified key uses a very

complex algorithm that this author has still not yet been able to fully understand or get to work. Fear

not however …

Again, applying the KISS principle I decided to let the reader itself calculate the diversified key for me

since HID was kind enough to provide an iClass Serial Communication Protocol that includes an

instruction (0x52) for calculating diversified keys. Using this approach allowed me to bypass having to

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 8

deal with the DES encryption and other complex aspects of the diversified key algorithm. This capability

was originally designed into the RW300 and RW400 iClass readers to allow third party developers to

calculate the keys for use with their own application. The instruction is used to calculate a diversified key

from a CSN and one of the user definable keys values stored in EEPROM. Since it was not feasible to load

a key into the EEPROM for each of the 2^24 possible iterations, I instead devised an approach whereby I

poked the iterated value directly into PIC RAM where the HID firmware normally kept it as a global

variable. However, poking 8-bytes of data into RAM using the 57.6 KBaud serial interface is not a very

speedy solution when you are talking about doing the 16+ million calculations needed to recover the

first three bytes of the key table. This approach however was adequate for recovering each of the

remaining 125 bytes when only 256 calculations are needed .

My solution was to use the reader to calculate the 2^24 diversified key values once (using the slow

serial process) and use the returned data to create a master Lookup Table (LUT) that could be used for

all future calculations. Building the entire table took approximately one month due to the slow 57.6

KBaud limitation of the RW300 iclass reader. The table is large (~500MB) but the overall resulting

benefit in speed for all future calculations was definitely a worthwhile trade.

A brief sample extract from the created table is shown below. The hash1 value using iterated byte

values is on the left while the resulting calculated diversified key is shown on the right.

Hash1 Temp Key Diversified key
2020000000200000 FE06F34D3AF1D41D
2020000001200101 E930A4707569DBC0
2020000002200202 1F1B68B80982DB90
2020000003200303 D51088E49779BDEE
2020000004200404 4C82C15AA541ECEF
2020000005200505 87318F17D634B68A
2020000006200606 35E2FB644738367D
2020000007200707 447A9DD3F93DDC66
2020000008200808 52C5547B677C2E33
... ...
... ...
... ...
2020FFFFF820F8F8 A45ECF96E6F19755
2020FFFFF920F9F9 39AC9CF64E41C1B3
2020FFFFFA20FAFA 7D4B3844C1F582D6
2020FFFFFB20FBFB 7AA9B21F7C253B12
2020FFFFFC20FCFC 64023560AC93BB83
2020FFFFFD20FDFD 2EBA36449FED0BB5
2020FFFFFE20FEFE DDF74068F6279A1F

Putting it all together
At this point I have built my list of weak CSN/Hash1 values, used my custom built hardware to simulate

the weak CSN’s while attempting authentication with a reader, and built up a large Look up Table of

Diversified key values. All that was left to do was to take the MAC cypher algorithm that was defined in

the “Dismantling iClass” paper and feed it the whole set of 2^24 possible diversified keys until I found a

match for the MAC that was returned by the reader when simulating the list of weak CSN’s.

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 9

The cipher algorithm itself is a fairly straight forward algorithm which just requires initializing a few

registers, and then doing a combination of register shifting and XOR’ing of select bits and diversified key

bytes while shifting in a serial stream of bits that include the nonce and card challenge. The serial

output will yield the 32-bit MAC value .

Recovering the first three bytes of the key table simply involved iterating through 2^24 key

combinations and using the LUT to obtain a diversified key which was then fed into the cipher algorithm.

If the calculated MAC matched the previously stored MAC then the correct key bytes had been found.

Recovering the remaining 125 key byte values used the same basic principle as above except that the PC

used the iclass reader to calculate the diversified key for each of the 256 iterations instead of using a

LUT approach. Using a LUT for these last key bytes would be impractical since the required table would

be 256 times larger.

Test Cases

HID has many corporate and government iClass customers that have elected to use the supposedly

higher security “Elite” mode of operation. They are each typically assigned a unique Elite Authentication

code by HID so that only cards and readers that have been configured with that key will work within that

system. There are also several third party access control and security vendors that have partnered with

HID to resell the iClass Elite brand of products under their own particular brand name. Two examples of

these companies is Keyscan in Canada (http://www.keyscan.com.ca) and ISCS in Australia

(http://www.iscs.com.au) . To the best of my knowledge, all of the iClass products sold by Keyscan

appear to use the same High Security/Elite authentication key. It is currently unclear whether ISCS uses

just one or several different High security keys that they assign to users of their iClass systems. I have

specifically targeted ISCS as a test case as a result of a specific claim that they have posted on their

website. The posted message to their customers reads as follows:

“ISCS wishes to congratulate all of our informed customers who have chosen our Gold Class i-Class

format when selecting their cards and reader product to both protect and future proof their clients

facilities, you made the right choice. There are quite a few videos and emails circulating in the market

about the ease of cracking or cloning MIFARE and i-Class cards, we at ISCS are very pleased to advise you

that this DOES NOT relate to ISCS Gold Class i-Class products. ISCS Gold Class is totally secure and always

has been.”

I have used my CSN simulation hardware to capture MAC codes from both the Keyscan and ISCS Gold

Class RevC readers shown in the photo below. I have run the resulting data through my key recovery

software application and have successfully recovered the key table from each of the units. To verify the

validity of the key table values I obtained I have loaded the data into a standard RW300 iClass reader

and used it to successfully execute the following tasks:

1. Read all data blocks stored within the Keyscan and Gold Class credentials.

A Covert Approach to Recovering iClass High Security Keys

www.proxclone.com 1/02/13 Page 10

2. Reprogram the Keyscan and Gold Class credentials to use a different facility code and card

number.

3. Reprogram a standard Off-the-Shelf iClass credential to function with both Keyscan and Gold

Class readers.

4. Generate several configuration cards to work with both Keyscan and Gold Class readers.

Test Case iClass Readers (Keyscan and Gold Class)

Conclusion

I have attempted to show that the information presented in the various referenced iClass papers is

accurate and provides sufficient information to allow an RFID hobbyist such as myself, with a limited

skillset, to be able to covertly extract valuable authentication key information from a high security/Elite

iClass reader. End users of these systems need to draw their own conclusions regarding whether HID

“Elite” mode provides sufficient security to protect the assets where these systems are currently

installed. I have found no acknowledgement on the HID website that these vulnerabilities even exist or

that a hardware or firmware update is available for concerned end users. It appears that the only

solution that HID has to offer to their existing customers is to optionally upgrade their entire system to

use the recently introduced iClass SE family of products. Is iClass SE secure? Stay tuned …..

